Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Clin Transl Sci ; 17(3): e13778, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38515346

RESUMO

Persea americana fruit (PAF) is a favorable nutraceutical resource that comprises diverse unsaturated fatty acids (UFAs). UFAs are significant dietary supplementation, as they relieve metabolic disorders, including obesity (OB). In another aspect, this study was focused on the anti-OB efficacy of the non-fatty acids (NFAs) in PAF through network pharmacology (NP). Natural product activity & species source (NPASS), SwissADME, similarity ensemble approach (SEA), Swiss target prediction (STP), DisGeNET, and online Mendelian inheritance in man (OMIM) were utilized to gather significant molecules and its targets. The crucial targets were adopted to construct certain networks: protein-protein interaction (PPI), PAF-signaling pathways-targets-compounds (PSTC) networks, a bubble chart, molecular docking assay (MDA), and density function theory (DFT). Finally, the toxicities of the key compounds were validated by ADMETlab 2.0 platform. All 41 compounds in PAF conformed to Lipinski's rule, and the key 31 targets were identified between OB and PAF. On the bubble chart, PPAR signaling pathway had the highest rich factor, suggesting that the pathway might be an agonism for anti-OB. Conversely, estrogen signaling pathway had the lowest rich factor, indicating that the mechanism might be antagonism against OB. Likewise, the PSTC network represented that AKT1 had the greatest degree value. The MDA results showed that AKT1-gamma-tocopherol, PPARA-fucosterol, PPARD-stigmasterol, (PPARG)-fucosterol, (NR1H3)-campesterol, and ILK-alpha-tocopherol formed the most stable conformers. The DFT represented that the five molecules might be promising agents via multicomponent targeting. Overall, this study suggests that the NFAs in PAF might play important roles against OB.


Assuntos
Frutas , Persea , Humanos , Simulação de Acoplamento Molecular , Bioensaio , Ácidos Graxos , Obesidade/tratamento farmacológico
4.
Gut Microbes ; 16(1): 2307568, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38299316

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease, and its prevalence has increased worldwide in recent years. Additionally, there is a close relationship between MASLD and gut microbiota-derived metabolites. However, the mechanisms of MASLD and its metabolites are still unclear. We demonstrated decreased indole-3-propionic acid (IPA) and indole-3-acetic acid (IAA) in the feces of patients with hepatic steatosis compared to healthy controls. Here, IPA and IAA administration ameliorated hepatic steatosis and inflammation in an animal model of WD-induced MASLD by suppressing the NF-κB signaling pathway through a reduction in endotoxin levels and inactivation of macrophages. Bifidobacterium bifidum metabolizes tryptophan to produce IAA, and B. bifidum effectively prevents hepatic steatosis and inflammation through the production of IAA. Our study demonstrates that IPA and IAA derived from the gut microbiota have novel preventive or therapeutic potential for MASLD treatment.


Assuntos
Bifidobacterium bifidum , Fígado Gorduroso , Microbioma Gastrointestinal , Doenças Metabólicas , Animais , Humanos , Metabolismo dos Lipídeos , Indóis/farmacologia , Fígado Gorduroso/tratamento farmacológico , Inflamação/tratamento farmacológico
5.
Gut Microbes ; 15(2): 2281014, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37988132

RESUMO

The liver is rich in innate immune cells, such as natural killer (NK) cells, natural killer T cells, and Kupffer cells associated with the gut microbiome. These immune cells are dysfunctional owing to alcohol consumption. However, there is insufficient data on the association between immune cells and gut microbiome in alcoholic liver disease (ALD). Therefore, the purpose of this study was to evaluate the effects of probiotic strains on NK cells in ALD patients. In total, 125 human blood samples [control (n = 22), alcoholic hepatitis (n = 43), and alcoholic cirrhosis (n = 60]) were collected for flow cytometric analysis. C57BL/6J mice were divided into four groups (normal, EtOH-fed, and 2 EtOH+strain groups [Phocaeicola dorei and Lactobacillus helveticus]). Lymphocytes isolated from mouse livers were analyzed using flow cytometry. The frequency of NK cells increased in patients with alcoholic hepatitis and decreased in patients with alcoholic cirrhosis. The expression of NKp46, an NK cell-activating receptor, was decreased in patients with alcoholic hepatitis and increased in patients with alcoholic cirrhosis compared to that in the control group. The number of cytotoxic CD56dimCD16+ NK cells was significantly reduced in patients with alcoholic cirrhosis. We tested the effect of oral administration P. dorei and L. helveticus in EtOH-fed mice. P. dorei and L. helveticus improved liver inflammation and intestinal barrier damage caused by EtOH supply and increased NK cell activity. Therefore, these observations suggest that the gut microbiome may ameliorate ALD by regulating immune cells.


Assuntos
Microbioma Gastrointestinal , Hepatite Alcoólica , Hepatopatias Alcoólicas , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Cirrose Hepática Alcoólica , Células Matadoras Naturais , Etanol
7.
Artif Cells Nanomed Biotechnol ; 51(1): 217-232, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37129458

RESUMO

We comprised metabolites of gut microbiota (GM; endogenous species) and dietary plant-derived natural flavonoids (DPDNFs; exogenous species) were known as potent effectors against non-alcoholic fatty liver disease (NAFLD) via network pharmacology (NP). The crucial targets against NAFLD were identified via GM and DPDNFs. The protein interaction (PPI), bubble chart and networks of GM or natural products- metabolites-targets-key signalling (GNMTK) pathway were described via R Package. Furthermore, the molecular docking test (MDT) to verify the affinity was performed between metabolite(s) and target(s) on a key signalling pathway. On the networks of GNMTK, Enterococcus sp. 45, Escherichia sp.12, Escherichia sp.33 and Bacterium MRG-PMF-1 as key microbiota; flavonoid-rich products as key natural resources; luteolin and myricetin as key metabolites (or dietary flavonoids); AKT Serine/Threonine Kinase 1 (AKT1), CF Transmembrane conductance Regulator (CFTR) and PhosphoInositide-3-Kinase, Regulatory subunit 1 (PIK3R1) as key targets are promising components to treat NAFLD, by suppressing cyclic Adenosine MonoPhosphate (cAMP) signalling pathway. This study shows that components (microbiota, metabolites, targets and a key signalling pathway) and DPDNFs can exert combinatorial pharmacological effects against NAFLD. Overall, the integrated pharmacological approach sheds light on the relationships between GM and DPDNFs.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Simulação de Acoplamento Molecular , Farmacologia em Rede , Flavonoides/farmacologia
8.
Life Sci ; 322: 121626, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37003543

RESUMO

AIMS: Nonalcoholic fatty liver disease (NAFLD) is becoming more common and severe. Individuals with NAFLD have an altered composition of gut- microbial metabolites. We used metabolomics profiling to identify microbial metabolites that could indicate gut-liver metabolic severity. Noninvasive biomarkers are required for NAFLD, especially for patients at high risk of disease progression. MAIN METHODS: We compared the stool metabolomes, untargeted metabolomics, and clinical data of 80 patients. Patients with nonalcoholic fatty liver (NAFL: n = 16), nonalcoholic steatohepatitis (NASH: n = 26), and cirrhosis (n = 19) and healthy control individuals (HC: n = 19) were enrolled. The identified metabolites in NAFLD were evaluated by multivariate statistical analysis and metabolic pathotypic expression. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography coupled to time-of-flight-mass spectrometry (LC-TOF-MS) were used to analyze metabolites. KEY FINDINGS: Untargeted metabolomics was used to identify and quantify 103 metabolites. Principal component analysis (PCA) was used to assess the metabolic discrimination of NAFL, NASH, and cirrhosis. Short-chain fatty acids (SCFA) levels were significantly lower in NAFLD patients, including those of acetate (p = 0.03), butyrate (p = 0.0008), and propionate. The stool cholic acid (p = 0.001) level was significantly increased in NAFLD patients. Palmitoylcarnitine and l-carnitine levels were significantly increased in NASH and cirrhosis patients. The phenotypic expression of these metabolites was linked to ß-oxidation. SIGNIFICANCE: We demonstrated a distinct metabolome profile in NAFLD patients with NAFL, NASH, and cirrhosis. We also discovered that the expression of certain metabolites and metabolic pathways was linked to NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolômica/métodos , Fenótipo , Biomarcadores/metabolismo , Cirrose Hepática
9.
J Transl Med ; 21(1): 263, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069607

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a serious public health issue globally, currently, the treatment of NAFLD lies still in the labyrinth. In the inchoate stage, the combinatorial application of food regimen and favorable gut microbiota (GM) are considered as an alternative therapeutic. Accordingly, we integrated secondary metabolites (SMs) from GM and Avena sativa (AS) known as potent dietary grain to identify the combinatorial efficacy through network pharmacology. METHODS: We browsed the SMs of AS via Natural Product Activity & Species Source (NPASS) database and SMs of GM were retrieved by gutMGene database. Then, specific intersecting targets were identified from targets related to SMs of AS and GM. The final targets were selected on NAFLD-related targets, which was considered as crucial targets. The protein-protein interaction (PPI) networks and bubble chart analysis to identify a hub target and a key signaling pathway were conducted, respectively. In parallel, we analyzed the relationship of GM or AS─a key signaling pathway─targets─SMs (GASTM) by merging the five components via RPackage. We identified key SMs on a key signaling pathway via molecular docking assay (MDA). Finally, the identified key SMs were verified the physicochemical properties and toxicity in silico platform. RESULTS: The final 16 targets were regarded as critical proteins against NAFLD, and Vascular Endothelial Growth Factor A (VEGFA) was a key target in PPI network analysis. The PI3K-Akt signaling pathway was the uppermost mechanism associated with VEGFA as an antagonistic mode. GASTM networks represented 122 nodes (60 GM, AS, PI3K-Akt signaling pathway, 4 targets, and 56 SMs) and 154 edges. The VEGFA-myricetin, or quercetin, GSK3B-myricetin, IL2-diosgenin complexes formed the most stable conformation, the three ligands were derived from GM. Conversely, NR4A1-vestitol formed stable conformation with the highest affinity, and the vestitol was obtained from AS. The given four SMs were no hurdles to develop into drugs devoid of its toxicity. CONCLUSION: In conclusion, we show that combinatorial application of AS and GM might be exerted to the potent synergistic effects against NAFLD, dampening PI3K-Akt signaling pathway. This work provides the importance of dietary strategy and beneficial GM on NAFLD, a data mining basis for further explicating the SMs and pharmacological mechanisms of combinatorial application (AS and GM) against NAFLD.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Avena , Simulação de Acoplamento Molecular , Farmacologia em Rede , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fator A de Crescimento do Endotélio Vascular
10.
Hepatol Int ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37000389

RESUMO

BACKGROUND AND AIM: The prevalence and severity of alcoholic liver disease (ALD) are increasing. The incidence of alcohol-related cirrhosis has risen up to 2.5%. This study aimed to identify novel metabolite mechanisms involved in the development of ALD in patients. The use of gut microbiome-derived metabolites is increasing in targeted therapies. Identifying metabolic compounds is challenging due to the complex patterns that have long-term effects on ALD. We investigated the specific metabolite signatures in ALD patients. METHODS: This study included 247 patients (heathy control, HC: n = 62, alcoholic fatty liver, AFL; n = 25, alcoholic hepatitis, AH; n = 80, and alcoholic cirrhosis, AC, n = 80) identified, and stool samples were collected. 16S rRNA sequencing and metabolomics were performed with MiSeq sequencer and liquid chromatography coupled to time-of-flight-mass spectrometry (LC-TOF-MS), respectively. The untargeted metabolites in AFL, AH, and AC samples were evaluated by multivariate statistical analysis and metabolic pathotypic expression. Metabolic network classifiers were used to predict the pathway expression of the AFL, AH, and AC stages. RESULTS: The relative abundance of Proteobacteria was increased and the abundance of Bacteroides was decreased in ALD samples (p = 0.001) compared with that in HC samples. Fusobacteria levels were higher in AH samples (p = 0.0001) than in HC samples. Untargeted metabolomics was applied to quantitatively screen 103 metabolites from each stool sample. Indole-3-propionic acid levels are significantly lower in AH and AC (vs. HC, p = 0.001). Indole-3-lactic acid (ILA: p = 0.04) levels were increased in AC samples. AC group showed an increase in indole-3-lactic acid (vs. HC, p = 0.040) level. Compared with that in HC samples, the levels of short-chain fatty acids (SCFAs: acetic acid, butyric acid, propionic acid, iso-butyric acid, and iso-valeric acid) and bile acids (lithocholic acids) were significantly decreased in AC. The pathways of linoleic acid metabolism, indole compounds, histidine metabolism, fatty acid degradation, and glutamate metabolism were closely associated with ALD metabolism. CONCLUSIONS: This study identified that microbial metabolic dysbiosis is associated with ALD-related metabolic dysfunction. The SCFAs, bile acids, and indole compounds were depleted during ALD progression. CLINICAL TRIAL: Clinicaltrials.gov, number NCT04339725.

11.
J Microbiol ; 61(2): 245-257, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36745335

RESUMO

The progression and exacerbation of liver fibrosis are closely related to the gut microbiome. It is hypothesized that some probiotics may slow the progression of liver fibrosis. In human stool analysis [healthy group (n = 44) and cirrhosis group (n = 18)], difference in Lactobacillus genus between healthy group and cirrhosis group was observed. Based on human data, preventive and therapeutic effect of probiotics Lactobacillus lactis and L. rhamnosus was evaluated by using four mice fibrosis models. L. lactis and L. rhamnosus were supplied to 3,5-diethoxycarbonyl-1,4-dihydrocollidine or carbon tetrachloride-induced liver fibrosis C57BL/6 mouse model. Serum biochemical measurements, tissue staining, and mRNA expression in the liver were evaluated. The microbiome was analyzed in mouse cecal contents. In the mouse model, the effects of Lactobacillus in preventing and treating liver fibrosis were different for each microbe species. In case of L. lactis, all models showed preventive and therapeutic effects against liver fibrosis. In microbiome analysis in mouse models administered Lactobacillus, migration and changes in the ratio and composition of the gut microbial community were confirmed. L. lactis and L. rhamnosus showed preventive and therapeutic effects on the progression of liver fibrosis, suggesting that Lactobacillus intake may be a useful strategy for prevention and treatment.


Assuntos
Lacticaseibacillus rhamnosus , Probióticos , Humanos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Lactobacillus , Cirrose Hepática/prevenção & controle
12.
Sci Rep ; 13(1): 724, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639568

RESUMO

The metabolites of gut microbiota show favorable therapeutic effects on nonalcoholic fatty liver disease (NAFLD), but the active metabolites and mechanisms against NAFLD have not been documented. The aim of the study was to investigate the active metabolites and mechanisms of gut microbiota against NAFLD by network pharmacology. We obtained a total of 208 metabolites from the gutMgene database and retrieved 1256 targets from similarity ensemble approach (SEA) and 947 targets from the SwissTargetPrediction (STP) database. In the SEA and STP databases, we identified 668 overlapping targets and obtained 237 targets for NAFLD. Thirty-eight targets were identified out of those 237 and 223 targets retrieved from the gutMgene database, and were considered the final NAFLD targets of metabolites from the microbiome. The results of molecular docking tests suggest that, of the 38 targets, mitogen-activated protein kinase 8-compound K and glycogen synthase kinase-3 beta-myricetin complexes might inhibit the Wnt signaling pathway. The microbiota-signaling pathways-targets-metabolites network analysis reveals that Firmicutes, Fusobacteria, the Toll-like receptor signaling pathway, mitogen-activated protein kinase 1, and phenylacetylglutamine are notable components of NAFLD and therefore to understanding its processes and possible therapeutic approaches. The key components and potential mechanisms of metabolites from gut microbiota against NAFLD were explored utilizing network pharmacology analyses. This study provides scientific evidence to support the therapeutic efficacy of metabolites for NAFLD and suggests holistic insights on which to base further research.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Simulação de Acoplamento Molecular , Farmacologia em Rede , Via de Sinalização Wnt
13.
Artif Cells Nanomed Biotechnol ; 51(1): 1-12, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36562095

RESUMO

We intended to identify favourable metabolite(s) and pharmacological mechanism(s) of gut microbiota (GM) for liver regeneration (LR) through network pharmacology. We utilized the gutMGene database to obtain metabolites of GM, and targets associated with metabolites as well as LR-related targets were identified using public databases. Furthermore, we performed a molecular docking assay on the active metabolite(s) and target(s) to verify the network pharmacological concept. We mined a total of 208 metabolites in the gutMGene database and selected 668 targets from the SEA (1,256 targets) and STP (947 targets) databases. Finally, 13 targets were identified between 61 targets and the gutMGene database (243 targets). Protein-protein interaction network analysis showed that AKT1 is a hub target correlated with 12 additional targets. In this study, we describe the potential microbe from the microbiota (E. coli), chemokine signalling pathway, AKT1 and myricetin that accelerate LR, providing scientific evidence for further clinical trials.


Assuntos
Microbioma Gastrointestinal , Escherichia coli , Regeneração Hepática , Simulação de Acoplamento Molecular , Farmacologia em Rede
14.
3 Biotech ; 12(11): 312, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36276446

RESUMO

In Korea folk remedies, Acyranthes bidentata Blume is a functional food plant to treat bone diseases; especially, its roots have been used to alleviate osteoporosis (OP), but its key chemical compound(s) and mechanism of action against osteoporosis have not reported yet. This study suggests that Acyranthes bidentata Blume root (ABBR) has promising compound(s) against OP. We utilized network pharmacology to evaluate the therapeutic value. The chemical compounds from Acyranthes bidentata Blume root (ABBR) were identified by gas chromatography-mass spectrum (GC-MS); their physicochemical properties have been evaluated by SwissADME. Next, the target(s) related to a triterpenoid or OP-related targets were investigated by public databases. The signaling pathways from final targets were visualized, constructed, and analyzed by RPackage. Finally, we performed a molecular docking (MD) to explore key target(s) and compound(s) by employing AutoDockVina tools; the residues of amino acids interacted with ligands were identified by LigPlot + v.22. A total of 24 chemicals were accepted by the Lipinski's rules. We found a sole triterpenoid from ABBR via GC-MS, suggesting that might be a potent ligand to alleviate OP. Thereby, the 42 targets were associated with the triterpenoid; the 19 targets among them were connected to OP-targets (1426). The final 19 targets were related directly to 8 signaling pathways on STRING database. On Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and a key signaling pathway (PPAR signaling pathway), four key targets (PPARA, PPARD, FABP3, and FABP4) and a key compound (Methyl 3ß-hydroxyolean-18-en-28-oate) were selected via MD. Collectively, the triterpenoid from ABBR might have potent anti-osteoporotic efficacy by activating PPARA, PPARD, FABP3, and FABP4 on PPAR signaling pathway. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03362-5.

15.
Cells ; 11(18)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139478

RESUMO

The metabolites produced by the gut microbiota have been reported as crucial agents against obesity; however, their key targets have not been revealed completely in complex microbiome systems. Hence, the aim of this study was to decipher promising prebiotics, probiotics, postbiotics, and more importantly, key target(s) via a network pharmacology approach. First, we retrieved the metabolites related to gut microbes from the gutMGene database. Then, we performed a meta-analysis to identify metabolite-related targets via the similarity ensemble approach (SEA) and SwissTargetPrediction (STP), and obesity-related targets were identified by DisGeNET and OMIM databases. After selecting the overlapping targets, we adopted topological analysis to identify core targets against obesity. Furthermore, we employed the integrated networks to microbiota-substrate-metabolite-target (MSMT) via R Package. Finally, we performed a molecular docking test (MDT) to verify the binding affinity between metabolite(s) and target(s) with the Autodock 1.5.6 tool. Based on holistic viewpoints, we performed a filtering step to discover the core targets through topological analysis. Then, we implemented protein-protein interaction (PPI) networks with 342 overlapping target, another subnetwork was constructed with the top 30% degree centrality (DC), and the final core networks were obtained after screening the top 30% betweenness centrality (BC). The final core targets were IL6, AKT1, and ALB. We showed that the three core targets interacted with three other components via the MSMT network in alleviating obesity, i.e., four microbiota, two substrates, and six metabolites. The MDT confirmed that equol (postbiotics) converted from isoflavone (prebiotics) via Lactobacillus paracasei JS1 (probiotics) can bind the most stably on IL6 (target) compared with the other four metabolites (3-indolepropionic acid, trimethylamine oxide, butyrate, and acetate). In this study, we demonstrated that the promising substate (prebiotics), microbe (probiotics), metabolite (postbiotics), and target are suitable for obsesity treatment, providing a microbiome basis for further research.


Assuntos
Microbioma Gastrointestinal , Obesidade , Prebióticos , Probióticos , Butiratos , Equol , Humanos , Interleucina-6 , Simulação de Acoplamento Molecular , Farmacologia em Rede , Obesidade/terapia
16.
Foods ; 11(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36076888

RESUMO

Diet and lifestyle are crucial factors that influence the susceptibility of humans to nonalcoholic fatty liver disease (NAFLD). Personalized diet patterns chronically affect the composition and activity of microbiota in the human gut; consequently, nutrition-related dysbiosis exacerbates NAFLD via the gut-liver axis. Recent advances in diagnostic technology for gut microbes and microbiota-derived metabolites have led to advances in the diagnosis, treatment, and prognosis of NAFLD. Microbiota-derived metabolites, including tryptophan, short-chain fatty acid, fat, fructose, or bile acid, regulate the pathophysiology of NAFLD. The microbiota metabolize nutrients, and metabolites are closely related to the development of NAFLD. In this review, we discuss the influence of nutrients, gut microbes, their corresponding metabolites, and metabolism in the pathogenesis of NAFLD.

17.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012266

RESUMO

Hepatic encephalopathy (HE) is a serious complication of cirrhosis that causes neuropsychiatric problems, such as cognitive dysfunction and movement disorders. The link between the microbiota and the host plays a key role in the pathogenesis of HE. The link between the gut microbiome and disease can be positively utilized not only in the diagnosis area of HE but also in the treatment area. Probiotics and prebiotics aim to resolve gut dysbiosis and increase beneficial microbial taxa, while fecal microbiota transplantation aims to address gut dysbiosis through transplantation (FMT) of the gut microbiome from healthy donors. Antibiotics, such as rifaximin, aim to improve cognitive function and hyperammonemia by targeting harmful taxa. Current treatment regimens for HE have achieved some success in treatment by targeting the gut microbiota, however, are still accompanied by limitations and problems. A focused approach should be placed on the establishment of personalized trial designs and therapies for the improvement of future care. This narrative review identifies factors negatively influencing the gut-hepatic-brain axis leading to HE in cirrhosis and explores their relationship with the gut microbiome. We also focused on the evaluation of reported clinical studies on the management and improvement of HE patients with a particular focus on microbiome-targeted therapy.


Assuntos
Microbioma Gastrointestinal , Encefalopatia Hepática , Probióticos , Disbiose/complicações , Disbiose/terapia , Transplante de Microbiota Fecal/efeitos adversos , Fibrose , Encefalopatia Hepática/etiologia , Encefalopatia Hepática/terapia , Humanos , Cirrose Hepática/complicações , Cirrose Hepática/terapia , Probióticos/uso terapêutico
18.
Curr Issues Mol Biol ; 44(7): 3253-3266, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35877448

RESUMO

Alcoholic liver disease (ALD) is linked to a broad spectrum of diseases, including diabetes, hypertension, atherosclerosis, and even liver carcinoma. The ALD spectrum includes alcoholic fatty liver disease (AFLD), alcoholic hepatitis, and cirrhosis. Most recently, some reports demonstrated that the pathogenesis of ALD is strongly associated with metabolites of human microbiota. AFLD was the onset of disease among ALDs, the initial cause of which is alcohol consumption. Thus, we analyzed the significant metabolites of microbiota against AFLD via the network pharmacology concept. The metabolites from microbiota were retrieved by the gutMGene database; sequentially, AFLD targets were identified by public databases (DisGeNET, OMIM). The final targets were utilized for protein-protein interaction (PPI) networks and signaling pathway analyses. Then, we performed a molecular docking test (MDT) to verify the affinity between metabolite(s) and target(s) utilizing the Autodock 1.5.6 tool. From a holistic viewpoint, we integrated the relationships of microbiota-signaling pathways-targets-metabolites (MSTM) using the R Package. We identified the uppermost six key targets (TLR4, RELA, IL6, PPARG, COX-2, and CYP1A2) against AFLD. The PPI network analysis revealed that TLR4, RELA, IL6, PPARG, and COX-2 had equivalent degrees of value (4); however, CYP1A2 had no associations with the other targets. The bubble chart showed that the PI3K-Akt signaling pathway in nine signaling pathways might be the most significant mechanism with antagonistic functions in the treatment of AFLD. The MDT confirmed that Icaritin is a promising agent to bind stably to RELA (known as NF-Κb). In parallel, Bacterium MRG-PMF-1, the PI3K-Akt signaling pathway, RELA, and Icaritin were the most significant components against AFLD in MSTM networks. In conclusion, we showed that the Icaritin-RELA complex on the PI3K-Akt signaling pathway by bacterial MRG-PMF-1 might have promising therapeutic effects against AFLD, providing crucial evidence for further research.

19.
Curr Issues Mol Biol ; 44(5): 1788-1809, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35678652

RESUMO

Lithospermum erythrorhizon (LE) is known in Korean traditional medicine for its potent therapeutic effect and antiviral activity. Currently, coronavirus (COVID-19) disease is a developing global pandemic that can cause pneumonia. A precise study of the infection and molecular pathway of COVID-19 is therefore obviously important. The compounds of LE were identified from the Natural Product Activity and Species Source (NPASS) database and screened by SwissADME. The targets interacted with the compounds and were selected using the Similarity Ensemble Approach (SEA) and Swiss Target Prediction (STP) methods. PubChem was used to classify targets linked to COVID-19. The protein-protein interaction (PPI) networks and signaling pathways-targets-bioactive compounds (STB) networks were constructed by RPackage. Lastly, we performed the molecular docking test (MDT) to verify the binding affinity between significant complexes through AutoDock 1.5.6. The Natural Product Activity and Species Source (NPASS) revealed a total of 82 compounds from LE, which interacted with 1262 targets (SEA and STP), and 249 overlapping targets were identified. The 19 final overlapping targets from the 249 targets and 356 COVID-19 targets were ultimately selected. A bubble chart exhibited that inhibition of the MAPK signaling pathway could be a key mechanism of LE on COVID-19. The three key targets (RELA, TNF, and VEGFA) directly related to the MAPK signaling pathway, and methyl 4-prenyloxycinnamate, tormentic acid, and eugenol were related to each target and had the most stable binding affinity. The three bioactive effects on the three key targets might be synergistic effects to alleviate symptoms of COVID-19 infection. Overall, this study shows that LE can play a role in alleviating COVID-19 symptoms, revealing that the three components (bioactive compounds, targets, and mechanism) are the most significant elements of LE against COVID-19. However, the promising mechanism of LE on COVID-19 is only predicted on the basis of mining data; the efficacy of the chemical compounds and the affinity between compounds and the targets in experiment was ignored, which should be further substantiated through clinical trials.

20.
Curr Issues Mol Biol ; 44(5): 2257-2274, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35678682

RESUMO

In the present study, a subject of atopic dermatitis (AD) is exposed progressively to allergic rhinitis (AR) and asthma (AS), which is defined as atopic march (AM). However, both the targets and compounds against AM are still largely unknown. Hence, we investigated the overlapping targets related directly to the occurrence and development of AD, AR, and AS through public databases (DisGeNET, and OMIM). The final overlapping targets were considered as key targets of AM, which were visualized by a Venn diagram. The protein-protein interaction (PPI) network was constructed using R package software. We retrieved the association between targets and ligands via scientific journals, and the ligands were filtered by physicochemical properties. Lastly, we performed a molecular docking test (MDT) to identify the significant ligand on each target. A total of 229 overlapping targets were considered as AM causal elements, and 210 out of them were interconnected with each other. We adopted 65 targets representing the top 30% highest in degree centrality among 210 targets. Then, we obtained 20 targets representing the top 30% greatest in betweenness centrality among 65 targets. The network analysis unveiled key targets against AM, and the MDT confirmed the affinity between significant compounds and targets. In this study, we described the significance of the eight uppermost targets (CCL2, CTLA4, CXCL8, ICAM1, IL10, IL17A, IL1B, and IL2) and eight ligands (Bindarit, CTLA-4 inhibitor, Danirixin, A-205804, AX-24 HCl, Y-320, T-5224, and Apilimod) against AM, providing a scientific basis for further experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...